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1 Instructions

Please complete all exercises. There are no exercises in §5.

2 Spaces Under A

Definition 1 Let A be a space. A space under A is a map f : A→ X. If f : A→ X and
g : A → Y are spaces under A, then a map α : X → Y is said to be a map under A if it
makes the following triangle commute

A
f

~~~~
~~
~~
~~ g

  @
@@

@@
@@

@

X
α // Y.

(2.1)

Identity functions are maps under A. Moreover there is a well-defined composition of maps
under A. Thus the spaces and maps under A form a category which we denote A/Top and
call the category of spaces under A. �
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We call a space under A an underspace when repeated reference to A becomes clunky, and
write (X, f) to denote a given underspace f : A → X. The map f itself is said to be the

structure map of (X, f). We sometimes write α : X
A→ Y to denote a morphism in A/Top.

Example 2.1

1. If A = ∅, then ∅/Top isomorphic to Top.

2. If A = ∗, then ∗/Top isomorphic to Top∗.

3. If A = S0, then S0/Top is the category of bipointed spaces. The objects are topolog-
ical spaces with two distinguished basepoints, and maps under S0 must preserve both
basepoints. �

There is a forgetful functor

A/Top
U−→ Top, (X, f) 7→ X (2.2)

which sends an underspace f : A→ X to the space X. This functor has a left adjoint K

Top

K
))

⊥ A/Top.

U

hh (2.3)

Exercise 2.1 Construct the functor Top
K−→ A/Top. The property it must satisfy is the

following: for a space M and an underspace (X, f) there is a bijection

A/Top
(
K(M), (X, f)

) ∼= Top
(
M,U(X, f)

)
(2.4)

which is natural in both variables. �

With a little help from the adjunction 2.3 the following can now be made rigourous.

Proposition 2.1 The category A/Top has all limits and colimits.

The canonical reference for the category theoretical details is Borceaux’s book [1] §2 and §4.
As usual, in this course I will only ask you to understand the objects we will need.

Exercise 2.2 Identify the products, coproducts in the category A/Top. (You do not need
to rigourously construct these objects. Just observe the correct construction and write it
down.) �

Next we would like to define a notion of homotopy in the category A/Top. Although we
could define internal cylinders in A/Top and define homotopy in terms of these objects, in
practice they are difficult to work with. Thus we will prefer a more direct approach.
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Definition 2 Let (X, f), (Y, g) be spaces under A. We say that a homotopy H : X×I → Y
is a homotopy under A if at each time t ∈ I the map x 7→ Ht(x) is a map under A

A
f

~~~~
~~
~~
~~ g

  @
@@

@@
@@

@

X
Ht // Y.

(2.5)

�

Thus H is a homotopy under A if it satisfies

Ht(f(a)) = g(a), ∀t ∈ I, a ∈ A. (2.6)

The intuition is clearest when f, g are subspace inclusions.

Proposition 2.2 Homotopy under A is an equivalence relation which is compatible with
composition.

We have all the usual notions of homotopy equivalence under A, left-/right- homotopy inverse
under A, etc... In fact homotopy under A gives an elegant way to express many familiar
ideas.

Exercise 2.3 Let f : A → X be a space under A. Show that A is a strong deformation

retract of X if and only if the map f : (A, idA)
A→ (X, f) has a left homotopy inverse in the

category A/Top. �

3 The Mapping Cylinder

Let f : X → Y be a map. Over the last few exercise sheets we encountered both the
mapping cylinder Mf and mapping cone Cf of f . There were many similarities between the
two constructions, both intimately linked to the theory of cofibrations. It is the purpose of
this week’s exercises to explore the connection more fully. For ease we will work throughout
in the unpointed category. There are analogous constructions in the pointed category which
will be discussed at the end of these notes. By restricting to well-pointed spaces we shall be
able to transfer statements between the two categories with ease.

Definition 3 The unreduced mapping cylinder of a map f : X → Y is the space M̃f

defined by the pushout

X

f

�� y

in0 // X × I

��

Y
lf
// M̃f .

(3.1)

In particular we will understand

M̃f =
Y tX × I

[f(x) ∼ (x, 0)]
. (3.2)
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We write
lf : Y ↪→ M̃f (3.3)

for the canonical map. �

Notation: The tilde on M̃f is to distinguish it from the reduced mapping cylinder, i.e. the
construction made in the pointed category by replacing X × I with X ∧ I+. �

Example 3.1

1. The mapping cylinder of X → ∗ is the (unreduced) cone over X.

2. The mapping cylinder of ∗ → Y is the space Y ∪ I, which is obtained from Y by
‘growing a whisker’ over the basepoint.

3. The mapping cylinder of idX is the cylinder X × I. �

Now the inclusion X ↪→ X× I is both a closed cofibration and a homotopy equivalence, and
this implies that so is the map lf : Y ↪→ M̃f . This is a consequence of Proposition 6.3 of
Fibrations II. Moreover we know from Cofibrations Exercise 3.3 that this implies that Y is a
strong deformation retract of M̃f . Your first exercise this week will be to check these details
explicitly.

Use the diagram

X

f

�� y

in0 // X × I

��

prX

��
Y

lf // M̃f

rf

""E
E

E
E

E
X

f

��
Y

(3.4)

to define a map rf : M̃f → Y .

Exercise 3.1 Write down an explicit homotopy to show that rf is a homotopy equivalence
under Y . �

Now define a map jf : X → M̃f as the composite

jf : X
in1−−→ X × I → M̃f , x 7→ (x, 1). (3.5)

Then this us gives a factorisation of f through its mapping cylinder in a strictly commutative
diagram

X
jf

~~~~
~~
~~
~~ f

��>
>>

>>
>>

>

M̃f

rf // Y.

(3.6)

Moreover there is a canonical homotopy

lf ◦ f ' jf . (3.7)

Note, however, that this is not a homotopy under X.
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Exercise 3.2 Show that jf : X → M̃f is a closed cofibration. �

Thus the following makes sense.

Definition 4 Let f : X → Y be a map. We call the cofibration jf : X ↪→ M̃f the result of
converting f into a cofibration. �

The idea is that the mapping cylinder gives a functorial way of replacing a map with a
pointwise equivalent cofibration. We won’t be interested in functorality at this stage, but
will rather try to unravel the second statement.

To explain ourselves consider diagram (3.6), which displays rf as a map under X. You
showed in 3.1 that rf is a homotopy equivalence, but you’ll notice that you did not show there
that it is a homotopy equivalence under X. This is what we mean by pointwise equivalence.
It would be much preferable if Y and M̃f were homotopy equivalent under X.

Is it possible that these spaces can be homotopy equivalent in this way? And why would
this be desirable? As it turns out, the answer to these questions is found in that of another
question.

What if f is already a cofibration? Why replace something which doesn’t need
to be replaced?

In the exercises of the next section you will answer this question in much generality. A
consequence of your work will be that if f is already a cofibration, then rf in (3.6) is actually
a homotopy equivalence under X. A conclusion will be that the mapping cone construction
is the unique way to turn f into a fibration, up to homotopy equivalence under X.

4 Cofiber Homotopy Equivalences

Theorem 4.1 Let
A

f

~~~~
~~
~~
~~ g

  @
@@

@@
@@

@

X α // Y.

(4.1)

be a diagram of spaces under A in which α is an ordinary homotopy equivalence. If f, g are
both cofibrations, then α is a homotopy equivalence under A.

The remainder of the exercises will be devoted to proving this theorem.

Exercise 4.1 With the assumptions and notations of Theorem 4.1, show that there is a
map β : Y → X which is both a map under A and an ordinary homotopy inverse to α. �

Now, we claim that Theorem 4.1 is equivalent to the following statement.

If f : A→ X is a cofibration and

A
f

~~~~
~~
~~
~~ f

  A
AA

AA
AA

A

X
α // X.

(4.2)

is a map under A such that α ' idX in Top, then α has a left homotopy inverse
in A/Top.
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One direction of the equivalence is clear. To see how the last statement implies 4.1 we use
Exercise 4.1. Composing (5.3) with the map β constructed there we find ourselves in the
situation of (4.2). Then switching the rôles of α and β we apply the statement again to see
that it indeed implies Theorem 4.1.

You should pause a second to check through the details and convince yourself that the
last paragraph makes sense because we’ll use the reformulation to prove 3.6. Before this,
though, we need a lemma to help organise information under A.

Lemma 4.2 Let f : A ↪→ X be a cofibration and ϕ, θ : X → Y maps under A as in the
diagram

A
f

~~~~
~~
~~
~~ g

  @
@@

@@
@@

@

X
ϕ

θ
// Y.

(4.3)

Suppose that G : ϕ ' θ is an ordinary homotopy and that Ψ : A × I × I → Y is a track
homotopy ψ : Gf ∼ K. Then there is a homotopy G̃ : ϕ ' θ such that G̃f = K.

Notice that K : A× I → Y is an ordinary homotopy g = ϕf ' θf = g.

Exercise 4.2 Use the fact that

X × 0 ∪ A× I ∪X × 1 ↪→ X × I (4.4)

is a cofibration to prove Lemma 4.2. �

We’ll use the lemma in a second. First we need to set up a little more. Keeping the notation
of 4.2 begin by choosing a homotopy

H : α ' idX . (4.5)

Now use the fact that f is a cofibration to find a retraction1 r : X × I → A× I ∪X × 0 and
use it to define a homotopy J as the composite

J : X × I r−→ (A× I) ∪ (X × 0)
(Hf)∪idX−−−−−−→ X. (4.6)

Then J0 = idX and Jtf = Htf . Put

β = J1 : X → X. (4.7)

Notice that βf = J1f = H1f = αf = f , so this is a map under A.
Now we’re ready. In the next exercise we’ll want to apply Lemma 4.2 so we’ll set things

up to make use of its notation by letting

1. G = −Jα +H

2. ϕ = βα

3. θ = idX .

Exercise 4.3 Assemble the pieces and prove Theorem 4.1. �
1See Cofibrations Theorem 1.3

6



5 Applications

There are two basic applications for the mapping cylinder which we would like to discuss.
Both are related, but will take us in slightly different directions.

5.1 Some Consequences of Theorem 5.3

You were asked to prove the following using other methods in an earlier exercise sheet. It is
now an easy corollary of 5.3.

Proposition 5.1 If j : A ↪→ X is both a cofibration and a homotopy equivalence, then A is
a strong deformation retract of X.

Proof This follows from Exercise 2.3.

Corollary 5.2 Let f : X
'−→ Y be a homotopy equivalence. Then X is a strong deformation

retract of M̃f . In particular, two spaces are homotopy equivalent if and only if they are
deformation retracts of the same space.

Proof This follows from Exercise 3.1.

Another application we have for Theorem 5.3 is to deciding how different choices of
basepoint affect the pointed homotopy type of an unbased space.

Proposition 5.3 Let X be a space and x0, x1 ∈ X points such that each inclusion x0 ↪→ X
and x1 ↪→ X is a cofibration. Assume that there is a path l : I → X with l(i) = xi, i = 0, 1.
Then (X, x0) ' (X, x1) as pointed spaces.

Proof Apply the HEP to the pair (idX , l) to find a homotopy H : X×I → X with H0 = idX
and Ht(x0) = l(t). Set α = H1. Then α(x0) = x1, and α ' idX freely. By assumption the
inclusions x0, x1 ↪→ X are cofibrations, so we can apply Theorem 4.1 to get the statement.

Corollary 5.4 If X is a connected CW complex, then it has a well-defined pointed homotopy
type.

Proof The path component of a CW complex conicide with its connected components, sine
each CW complex is locally contractible [2]. Moroever, if X is CW complex and x ∈ X is
any point, then it is known that X has a (possibly different) CW structure which has x as a
vertex [2] pg. 67. In particular the inclusion of any point into X is a cofibration. Hence the
statement follows from 5.3.

Remark The also statement is true also when X is replaced by a connected manifold. �
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5.2 Uniqueness of the Mapping Cylinder

Next we want to address the question raised earlier. How unique is the mapping cylinder
construction? So assume that f : X → Y is a map, and we have constructed a commutative
diagram

X
kf

~~}}
}}
}}
}} f

��?
??

??
??

?

Nf

sf // Y

(5.1)

where Nf is some space, kf is a cofibration and sf is a homotopy equivalence. How does this
compare to the mapping cylinder (3.6)?

We choose a homotopy inverse to sf and consider the composite

θ̃ = s−1
f rf : M̃f → Y → Nf . (5.2)

Since rf and sf are homotopy equivalences, so is θ̃. Next we use the fact that jf : X ↪→ M̃f is

a cofibration to replace θ̃ with a homotopic map θ satisfying θjf = kf . Then θ is a homotopy
equivalent under X. Thus when we finally apply Theorem 5.3 we can conclude the following.

Proposition 5.5 Up to homotopy equivalence under X, the mapping cylinder construction
is the unique way to replace a map f : X → Y by a pointwise equivalence cofibration.

5.3 The Mapping Cylinder Again

Fix a map f : X → Y . To discuss the first application that we have in mind we will need to
recall the result of Exercise 3.2. Namely that there is a strictly commutative diagram

X
jf

~~||
||
||
|| f

��@
@@

@@
@@

@

Mf

rf // Y.

(5.3)

in which jf is a cofibration and rf is a homotopy equivalence.
What we would like to draw special attention to is that jf is a closed cofibration and

in particular a closed embedding. This is quite nice since there are many constructions in
topology of a more geometric nature that require the use of pairs of spaces. The mapping
cylinder allows for such constructions to be understood for arbitrary maps, rather than just
subspace inclusions.

For instance we can now make sense of a long exact sequence of cohomology groups when
given an arbitrary map f : X → Y . We simply define the relative groups in this case to be
H∗(Mf , X). This makes sense since X is embedded in Mf as a closed subspace and gives us
the following

. . . // H∗(Mf , X)

∆ &&MM
MMM

MMM
MMM

//___ H∗Y

r∗f ∼=
��

f∗ // H∗X // H∗+1(Mf , X) // . . .

H∗Mf

j∗f

::vvvvvvvvvv
(5.4)
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The solid arrows here come from the long-exact sequence of the pair (Mf , X). The map r∗f
is an isomorphism, since rf is a homotopy equivalence, and we define the dotted arrow using
its inverse l∗f . In this way the row becomes a long exact sequence. Here it doesn’t matter
that lf ◦ f ' jf is not a homotopy under X because for cohomology its existence alone is
enough to give us

j∗f = (lff)∗ = f ∗l∗f (5.5)

which is what we need to get exactness.
We’ll discuss the naturality of these sequences at a later point. For what we need now

we’ll need to recall that the unreduced mapping cylinder C̃f of a map f : X → Y is the
pushout space in the next square

X

f

��
y

in0 // C̃X

��

Y // C̃f .

(5.6)

We check easily the relation between the mapping cone and mapping cylinder of f .

M̃f/jf (X) ∼= C̃f . (5.7)

That is C̃f is the cofiber of jf : X ↪→ M̃f .

Lemma 5.6 The collapse map M̃f → M̃f/jf (X) ∼= C̃f induces an isomorphism

H̃∗(C̃f ) ∼= H∗(C̃f , ∗)
∼=−→ H∗(M̃f , X) (5.8)

Proof Set

C̃ ′X =
X × [1/3, 1]

X × 1
⊆ C̃f , (5.9)

Then C̃ ′X is contractible and we check easily that the quotient map is a homotopy equiva-
lence of pairs (C̃f , C̃

′X)
'−→ (C̃f , ∗). This map induces the isomorphism on the left-hand side

of the next diagram.

H∗(C̃f , ∗) //______________

∼=
��

H∗(M̃f , X)

excision∼=
��

H∗
(
C̃f , C̃

′X
) ∼=

excision
// H∗
(
Y ∪f (X × [0, 2/3]), X × [1/3, 2/3]

) (5.10)

The dotted arrow on the top of the diagram is an isomorphism and is exactly the map in
question.

Corollary 5.7 If j : A ↪→ X is a cofibration, then the quotient map X → X/A induces an
isomorphism

H̃∗(X/A) ∼= H∗(X,A). (5.11)
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Proof Since j is a cofibration X/A is almost well-pointed. Similarly C̃j is well-pointed when

we base it at the cone point. Then the map C̃j → C̃j/C̃A ∼= X/A is a homotopy equivalence
and based map, so according to Theorem 4.1 is a pointed homotopy equivalence. We also
know that rj : M̃j → X is a homotopy equivalence under A, which implies in particular that

it induces a homotopy equivalence of pairs (M̃j, A)
'−→ (X,A). We put these observations

together with Lemma 5.6 to get the isomorphisms in the next diagram

H∗(X/A, ∗)

��

∼= // H∗(C̃j, ∗)
∼=
��

H∗(X,A) ∼=

r∗j // H∗(M̃j, A)

(5.12)

and the conclusion follows.

Thus when j : A ↪→ X is a cofibration there is a long exact sequence of abelian groups

. . .→ H̃n−1A→ H̃nX/A
q∗−→ H̃nX

j∗−→ H̃nA
∂−→ H̃n+1X/A

q∗−→ H̃n+1X
j∗−→ . . . (5.13)

Compare this to Hatcher’s notion of a good pair in [3] Th. 2.13, pg. 114. Not every
cofibration j : A ↪→ X defines a good pair (X,A), but the fact that (X,A) is homotopy
equivalent to (Mj, A) as pairs, and (Mj, A) is good is enough for us to extend Hatcher’s
results.

On the other hand, if f : X → Y is any map, then there is the long exact sequence (5.4),
which under 5.6 becomes

. . .→ H̃n−1X → H̃nC̃f → H̃nY
f∗−→ H̃nX → H̃n+1C̃f → H̃n+1Y → . . . (5.14)

This can be especially useful when we can identify C̃f explicitly. For example it shows
directly how the attaching maps of a CW complex influence its cohomology.
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